AMD Sinkclose

Universal SMM Privilege Escalation

Enrique Nissim Krzysztof Okupski

@kiqueNissim @exminium

Outline

- Technical background
 - Privilege levels and SMM security
 - Remapping attacks
- Exploitation
 - Exploit development
 - Demo
- Attack paths
- Conclusions

SMM Introduction

©2024 IOActive, Inc. All Rights Reserved.

Introducing System Management Mode

- One of the most powerful execution modes in x86
 - ^o Full access to system and I/O device memory
 - ^o Access to the SPI flash (potential for persistence)
- Invisible to the rest of the system
 - Hidden from the OS and Hypervisor
 - ^o EDRs cannot help here

System Management Interrupts

- SMM is entered using a special external interrupt called the systemmanagement interrupt (SMI)
- After an SMI is received by the processor, the processor saves the processor state in a separate address space, called System Management RAM (SMRAM)

DRAM

Previous research

- Blogs
 - Exploring the security configuration of AMD platforms (2022)
 - Adventures in the Platform Security Coordinated Disclosure Circus (2023)
 - Back to the Future with Platform Security (2023)
 - Exploring AMD Platform Secure Boot (2023)
- Couple of CVEs

CVE-2023-20576	CVE-2023-20577	CVE-2023-20579
CVE-2023-20587	CVE-2023-20596	CVE-2023-31100
CVE-2023-28468	CVE-2023-2290	CVE-2023-5078

Tooling: <u>https://github.com/IOActive/Platbox</u>

SMM Security

©2024 IOActive, Inc. All Rights Reserved.

12 **IOActive**.

TSEG Region

- How does the memory controller protects SMRAM?
 - At boot-time BIOS configures two registers to setup the TSEG Region

MSRC001_0112 SMM TSeg Base Address (SMMAddr)

Rsvd	TSEG Base	Reserved
63 3 0	9	17

MSRC001_0113 SMM TSeg Mask (SMMMask)

	Rsvd	-	TSEG Mask	Rsvd	Tm Type Dram	Rsvd	Am Type Dram	Rsvd	Tm Type IoWc	Am Type IoWc	TClose	AClose	TValid	AValid
63 0	3	39	1	7							4	3	2	1

Summary of SMRAM Registers

- MSRC001_0111 (SMM_BASE used for SMM base address)
- MSRC001_0112 (SMM TSeg Base Address (SMMAddr))
- MSRC001_0113 (SMM TSeg Mask (SMMMask))
- MSRC001_0015[SmmLock] (HWCR used for locking the config)

These need to be configured for each core

Differences between AMD and Intel MSRs

- On Intel systems there are specific MSRs that are only accessible while the processor is executing at SMM
 - Example: IA32_SMBASE (SMM base register)
 - ^o Obtaining this value could be considered a leak
- On AMD all the MSRs that are related to the security of SMM are accessible from ring 0
 - Note that when SmmLock bit is set, accesibility does not imply the configuration can be changed even from SMM

Spotting the bug

Bits	Description
63:40	Reserved.
39:17	TSegMask[39:17]: TSeg address range mask. IF MSRC001_0015[SmmLock] THEN Read-only ELSE Read-write ENDIF. See MSRC001_0112.
16:15	Reserved.
14:12	TMTypeDram: TSeg address range memory type . IF MSRC001_0015[SmmLock] THEN Read- only. ELSE Read-write. ENDIF. Specifies the memory type for SMM accesses to the TSeg range that are directed to DRAM. See: Table 219 [Valid Values for Memory Type Definition].
11	Reserved.
10:8	AMTypeDram: ASeg Range Memory Type. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. Specifies the memory type for SMM accesses to the ASeg range that are directed to DRAM. See: Table 219 [Valid Values for Memory Type Definition].
7:6	Reserved.
5	TMTypeIoWc: non-SMM TSeg address range memory type . IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. Specifies the attribute of TSeg accesses that are directed to MMIO space. 0=UC (uncacheable). 1=WC (write combining).
4	AMTypeIoWc: non-SMM ASeg address range memory type. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. Specifies the attribute of ASeg accesses that are directed to MMIO space. 0=UC (uncacheable). 1=WC (write combining).
3	TClose: send TSeg address range data accesses to MMIO. Read-write. 1=When in SMM, direct data accesses in the TSeg address range to MMIO space. See AClose.
2	AClose: send ASeg address range data accesses to MMIO. Read-write. 1=When in SMM, direct data accesses in the ASeg address range to MMIO space.
	[A, T]Close allows the SMI handler to access the MMIO space located in the same address region as the [A, T]Seg. When the SMI handler is finished accessing the MMIO space, it must clear the bit. Failure to do so before resuming from SMM causes the CPU to erroneously read the save state from MMIO space.
1	TValid: enable TSeg SMM address range. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. 1=The TSeg address range SMM enabled.
0	AValid: enable ASeg SMM address range. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. 1=The ASeg address range SMM enabled.

Bits	Description
63:40	Reserved.
39:17	TSegMask[39:17]: TSeg address range mask. IF MSRC001_0015[SmmLock] THEN Read-only ELSE Read-write ENDIF. See MSRC001_0112.
16:15	Reserved.
14:12	TMTypeDram: TSeg address range memory type . IF <u>MSRC001_0015[SmmLock] THEN Read</u> - only. ELSE Read-write. ENDIF. Specifies the memory type for SMM accesses to the TSeg range that are directed to DRAM. See: Table 219 [Valid Values for Memory Type Definition].
11	Reserved.
10:8	AMTypeDram: ASeg Range Memory Type . IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. Specifies the memory type for SMM accesses to the ASeg range that are directed to DRAM. See: Table 219 [Valid Values for Memory Type Definition].
7:6	Reserved.
5	TMTypeIoWc: non-SMM TSeg address range memory type . IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. Specifies the attribute of TSeg accesses that are directed to MMIO space. 0=UC (uncacheable). 1=WC (write combining).
4	AMTypeIoWc: non-SMM ASeg address range memory type. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. Specifies the attribute of ASeg accesses that are directed to MMIO space. 0=UC (uncacheable). 1=WC (write combining).
3	TClose: send TSeg address range data accesses to MMIO. Read-write. 1=When in SMM, direct data accesses in the TSeg address range to MMIO space. See AClose.
2	AClose: send ASeg address range data accesses to MMIO. Read-write. 1=When in SMM, direct data accesses in the ASeg address range to MMIO space.
	[A, T]Close allows the SMI handler to access the MMIO space located in the same address region as the [A, T]Seg. When the SMI handler is finished accessing the MMIO space, it must clear the bit. Failure to do so before resuming from SMM causes the CPU to erroneously read the save state from MMIO space.
1	TValid: enable TSeg SMM address range. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. 1=The TSeg address range SMM enabled.
0	AValid: enable ASeg SMM address range. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. 1=The ASeg address range SMM enabled.

Bits	Description
63:40	Reserved.
39:17	TSegMask[39:17]: TSeg address range mask. IF MSRC001_0015[SmmLock] THEN Read-only ELSE Read-write ENDIF. See MSRC001_0112.
16:15	Reserved.
14:12	TMTypeDram: TSeg address range memory type . IF MSRC001_0015[SmmLock] THEN Read- only. ELSE Read-write. ENDIF. Specifies the memory type for SMM accesses to the TSeg range that are directed to DRAM. See: Table 219 [Valid Values for Memory Type Definition].
11	Reserved.
10:8	AMTypeDram: ASeg Range Memory Type. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. Specifies the memory type for SMM accesses to the ASeg range that are directed to DRAM. See: Table 219 [Valid Values for Memory Type Definition].
7:6	Reserved.
5	TMTypeIoWc: non-SMM TSeg address range memory type . IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. Specifies the attribute of TSeg accesses that are directed to MMIO space. 0=UC (uncacheable). 1=WC (write combining).
4	AMTypeIoWc: non-SMM ASeg address range memory type. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. Specifies the attribute of ASeg accesses that are directed to MMIO space. 0=UC (uncacheable). 1=WC (write combining).
3	TClose: send TSeg address range data accesses to MMIO. Read-write. 1=When in SMM, direct data accesses in the TSeg address range to MMIO space. See AClose.
2	 AClose: send ASeg address range data accesses to MMIO. Read-write. 1=When in SMM, direct data accesses in the ASeg address range to MMIO space. [A, T]Close allows the SMI handler to access the MMIO space located in the same address region as the [A, T]Seg. When the SMI handler is finished accessing the MMIO space, it must clear the bit.
	MMIO space.
1	TValid: enable TSeg SMM address range. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. 1=The TSeg address range SMM enabled.
0	AValid: enable ASeg SMM address range. IF MSRC001_0015[SmmLock] THEN Read-only. ELSE Read-write. ENDIF. 1=The ASeg address range SMM enabled.

More explicit in earlier docs

31116 Rev 3.62 - January 11, 2013

AMD Family 10h Processor BKDG

0 SmmLock: SMM code lock. Read; write-1-only. 1=SMM configuration registers SMM_BASE, SMMAddr, SMMMask (all except for SMMMask[TClose: AClose]) and SMM_CTL are read-or	ENCE enable . Read-write. 1=Enable slow sfence.	1 5	nce.
and SMI interrunts are not intercented in SVM	de lock . Read; write-1-only. 1=SMM configuration reg usk (all except for SMMMask[TClose:AClose]) and SM	0 8	ration registers SMM_BASE, and SMM_CTL are read-only

Source:

https://www.amd.com/content/dam/amd/en/documents/archived-techdocs/revision-guides/41322_10h_Rev_Gd.pdf

MSR C001_0113 SMM TSeg Mask (SMMMask)

This register specifies how accesses to the ASeg and TSeg address ranges are controlled as follows:

- If [A,T]Valid=1, then:
 - If in SMM, then:
 - If [A, T]Close=0, then the accesses are directed to DRAM with memory type as specified in [A, T]MTypeDram.
 - If [A, T]Close=1, then instruction accesses are directed to DRAM with memory type as specified in [A, T]MTypeDram and data accesses are directed at MMIO space and with attributes based on [A, T]MTypeIoWc.
 - If not in SMM, then the accesses are directed at MMIO space with attributes based on [A,T]MTypeIoWc.

©2024 IOActive, Inc. All Rights Reserved.

²⁴ **IOActive**

©2024 IOActive, Inc. All Rights Reserved.

²⁷ **IOActive**.

Triggering the condition

```
void test() {
    open_platbox_device();
```

```
UINT64 tseg_mask = 0;
do_read_msr(AMD_MSR_SMM_TSEG_MASK, &tseg_mask);
tseg_mask = tseg_mask | (0b11 << 2);
do_write_msr(AMD_MSR_SMM_TSEG_MASK, tseg_mask);
```

```
SW_SMI_CALL smi_call = { 0 };
trigger_smi(&smi_call);
```

```
close_platbox_device();
```


Why does this feature exist?

- This allows to re-use the physical address space
- We have yet to see a vendor using this feature

8.11.5 Closing SMM

Sometimes within SMM code with ASeg or TSeg enabled, there is a requirement to access the I/O space at the same address as the current SMM segment. That is typically only accessible outside of SMM. To accomplish this function, the Aclose and Tclose bits from SMM_MASK register are used. When the Aclose bit is set, data cache accesses to the ASeg that would normally go to DRAM are redirected to I/O, with the memory type specified by AMTypeIoWc.

The same function applies to the TSeg. Instruction cache accesses and Page Directory/Table accesses still access the SMM code in DRAM. When the SMM handler is done accessing the I/O space, it must clear the appropriate close bit. Failure to do so and then issuing an RSM will probably cause the processor to enter shutdown, as the save state is read from I/O space.

When did this feature appear?

• First mentioned for AMD 0Fh processor families (2006)

 BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors <u>https://www.amd.com/content/dam/amd/en/documents/a</u> <u>rchived-tech-docs/programmer-references/32559.pdf</u>

• It's been around for 18 years...

Differences with the "Memory Sinkhole"

- Cristopher Domas presented the Memory Sinkhole attack in 2015
 - Affected Intel Sandy Bridge and previous generations
 - Remaps the APIC over the TSEG area
 - Causes data fetches to go to MMIO instead of SMRAM
- Key differences:
 - The memory sinkhole only affects the 4K portion where the APIC gets mapped
 - Sinkclose changes the behavior of the entire TSEG region
 - Any device could be overlapped... right?

Brainstorming attack ideas

Attack idea

- Use a PCIe device with a BAR having register values such that when overlapped with the SMM entry point, we could take control of the execution
- There are multiple integrated devices in modern systems
- We can try re-mapping the PCI Base Address Register (BAR) from one of them to make it overlap with SMRAM
- The registers for the device should become visible for the OS at the TSEG location

/dev/KernetixDriver0 opened successfully: 3													
+ SMM region info:													
TSEG Base : bf000000													
TSEG Size : 00ffffff													
SMM Base : bfea8000													
SMM-Entry : bfeb0000													
Ethernet controller BAR2 at: d0714000													
0xd0714000 00 2b 67 52 7c c0 00 00 40 00 00 00 80 00 00 00 .+gR @													
0xd0714010 00 c0 ff ff 00 00 00 00 08 07 06 00 00 00 00 00													
0xd0714020 00 b0 ff ff 00 00 00 00 00 00 00 00 00 00 00													
-> remapping BAR2 to overlap TSEG													
+ successfully overlaped the ethernet bar over SMM at: bfeb0000													
-> view of memory at smm entry point:													
0xbfeb0000 ff f													
0xbfeb0010 ff f													
0xbfeb0020 ff f													
-> Memory at BAR2 (d0714000):													
0xd0714000 ff f													
0xd0714010 ff f													
0xd0714020 ff f													
Restoring BAR and dumping again:													
0xd0714000 00 2b 67 52 7c c0 00 00 40 00 00 00 80 00 00 0 .+gR @													
0xd0714010 00 c0 ff ff 00 00 00 00 08 07 06 00 00 00 00 00													
0xd0714020 00 b0 ff ff 00 00 00 00 00 00 00 00 00 00 00													

+ SMM region info: TSEG Base : bf000000 TSEG Size : 00ffffff SMM Base : bf0000
TSEG Base : bf000000 TSEG Size : 00ffffff SMM Base : bf00000
TSEG Size : 00ffffff
SMM Base · hfea8000
SMM-Entry : bfeb0000
Ethernet controller BAR2 at: d0714000
0xd0714000 00 2b 67 52 7c c0 00 00 40 00 00 00 80 00 00 00 .+gR @
0xd0714010 00 c0 ff ff 00 00 00 00 08 07 06 00 00 00 00 00
0xd0714020 00 b0 ff ff 00 00 00 00 00 00 00 00 00 00 00
-> remapping BAR2 to overlap TSEG
+ successfully overlaped the ethernet bar over SMM at: bfeb0000
-> view of memory at smm entry point:
0xbfeb0000 ff f
0xbfeb0010 ff f
0xbfeb0020 ff f
-> Memory at BAR2 (d0714000):
0xd0714000 ff f
0xd0714010 ff f
0xd0714020 ff f
Restoring BAR and dumping again:
0xd0714000 00 2b 67 52 7c c0 00 00 40 00 00 00 80 00 00 0 .+gR @
0xd0714010 00 c0 ff ff 00 00 00 00 08 07 06 00 00 00 00 00
0xd0714020 00 b0 ff ff 00 00 00 00 00 00 00 00 00 00 00

TOM - Top of Memory

MSRC001_001A Top Of Memory (TOP_MEM)

Reset: 0000_0000_0000_0000h.

Bits	Description
63:40	RAZ.
39:23	TOM[39:23]: top of memory . Read-write. Specifies the address that divides between MMIO and DRAM. This value is normally placed below 4G. From TOM to 4G is MMIO; below TOM is DRAM. See 2.4.6 [System Address Map] and 2.9.11 [DRAM CC6/PC6 Storage].
22:0	RAZ.

- This register dictates where the MMIO region below 4G starts
- On Intel this register has a lock bit and cannot be modified when set
- There is no such lock in AMD :)

Moving TOM down

Moving TOM down

Moving TOM down

This worked in theory but not in practice...

2.4.6.1.2 Determining The Access Destination for Core Accesses

- RdDram/WrDram as determined by MSRC001_001A [Top Of Memory (TOP_MEM)] and MSRC001_001D [Top Of Memory 2 (TOM2)].
- 2. The IORRs. (see MSRC001_00[18,16] and MSRC001_00[19,17]).
- 3. The fixed MTRRs. (see MSR0000_02[6F:68,59:58,50] [Fixed-Size MTRRs])
- 4. TSeg & ASeg SMM mechanism. (see MSRC001_0112 and MSRC001_0113)
- 5. MMIO config space, APIC space.
 - MMIO APIC space and MMIO config space must not overlap.
 - RdDram=IO, WrDram=IO.
 - See 2.4.9.1.2 [APIC Register Space] and 2.7 [Configuration Space].
- 6. NB address space routing. See 2.8.2.1.1 [DRAM and MMIO Memory Space].

2.4.6.1.2 Determining The Access Destination for Core Accesses

- RdDram/WrDram as determined by MSRC001_001A [Top Of Memory (TOP_MEM)] and MSRC001_001D [Top Of Memory 2 (TOM2)].
- 2. The IORRs. (see MSRC001_00[18,16] and MSRC001_00[19,17]).
- 3. The fixed MTRRs. (see MSR0000_02[6F:68,59:58,50] [Fixed-Size MTRRs])
- 4. TSeg & ASeg SMM mechanism. (see MSRC001_0112 and MSRC001_0113)
- 5. MMIO config space, APIC space.
 - MMIO APIC space and MMIO config space must not overlap.
 - RdDram=IO, WrDram=IO.
 - See 2.4.9.1.2 [APIC Register Space] and 2.7 [Configuration Space].
- 6. NB address space routing. See 2.8.2.1.1 [DRAM and MMIO Memory Space].

2.4.6.1.2 Determining The Access Destination for Core Accesses

- RdDram/WrDram as determined by MSRC001_001A [Top Of Memory (TOP_MEM)] and MSRC001_001D [Top Of Memory 2 (TOM2)].
- 2. The IORRs. (see MSRC001_00[18,16] and MSRC001_00[19,17]).
- 3. The fixed MTRRs. (see MSR0000_02[6F:68,59:58,50] [Fixed-Size MTRRs])
- 4. TSeg & ASeg SMM mechanism. (see MSRC001_0112 and MSRC001_0113)
- 5. MMIO config space, APIC space.
 - MMIO APIC space and MMIO config space must not overlap.
 - RdDram=IO, WrDram=IO.
 - See 2.4.9.1.2 [APIC Register Space] and 2.7 [Configuration Space].
- 6. NB address space routing. See 2.8.2.1.1 [DRAM and MMIO Memory Space].

2.4.6.1.2 Determining The Access Destination for Core Accesses

- RdDram/WrDram as determined by MSRC001_001A [Top Of Memory (TOP_MEM)] and MSRC001_001D [Top Of Memory 2 (TOM2)].
- 2. The IORRs. (see MSRC001_00[18,16] and MSRC001_00[19,17]).
- 3. The fixed MTRRs. (see MSR0000_02[6F:68,59:58,50] [Fixed-Size MTRRs])
- 4. TSeg & ASeg SMM mechanism. (see MSRC001_0112 and MSRC001_0113)
- 5. MMIO config space, APIC space.
 - MMIO APIC space and MMIO config space must not overlap.
 - RdDram=IO, WrDram=IO.
 - See 2.4.9.1.2 [APIC Register Space] and 2.7 [Configuration Space].
- 6. NB address space routing. See 2.8.2.1.1 [DRAM and MMIO Memory Space].

2.4.6.1.2 Determining The Access Destination for Core Accesses

- RdDram/WrDram as determined by MSRC001_001A [Top Of Memory (TOP_MEM)] and MSRC001_001D [Top Of Memory 2 (TOM2)].
- 2. The IORRs. (see MSRC001_00[18,16] and MSRC001_00[19,17]).
- 3. The fixed MTRRs. (see MSR0000_02[6F:68,59:58,50] [Fixed-Size MTRRs])
- 4. TSeg & ASeg SMM mechanism. (see MSRC001_0112 and MSRC001_0113)
- 5. MMIO config space, APIC space.
 - MMIO APIC space and MMIO config space must not overlap.
 - RdDram=IO, WrDram=IO.
 - See 2.4.9.1.2 [APIC Register Space] and 2.7 [Configuration Space].
- 6. NB address space routing. See 2.8.2.1.1 [DRAM and MMIO Memory Space].

Global Descriptor Table (GDT)

jmp 0x8:0x1000

©2024 IOActive, Inc. All Rights Reserved.

Global Descriptor Table (GDT)

Global Descriptor Table (GDT)

0:	bb 4d	80	mov	bx,0x804d ; 0x8000 + 0x4D
3:	2e a1	d8 fd	mov	ax,cs:0xfdd8 ; DSC_OFFSET + 0xD8
7:	48		dec	ax
8:	2e 89	07	mov	WORD PTR cs:[bx],ax
b:	2e 66	a1 d0 fd	mov	<pre>eax,cs:0xfdd0 ; DSC_OFFSET + 0xD0</pre>
10:	2e 66	89 47 02	mov	DWORD PTR cs:[bx+0x2],eax
15:	2e 66	0f 01 17	lgdtd	cs:[bx];
1a:	b8 08	00	mov	ax,0x8
1d:	2e 89	47 fe	mov	WORD PTR cs:[bx-0x2],ax
21:	66 bf	00 30 f4 ae	mov	edi,0xaef43000
27:	66 67	8d 87 53 80 00	lea	eax,[edi+0x8053]
2e:	00			
2f:	2e 66	89 47 fa	mov	DWORD PTR cs:[bx-0x6],eax
34:	0f 20	c3	mov	ebx,cr0
37:	66 81	e3 f3 ff fa 9f	and	ebx,0x9ffafff3
3e:	66 83	cb 23	or	ebx,0x23
42:	0f 22	c3	mov	cr0,ebx
45:	66 ea	53 b0 f4 ae 08	jmp	0x8:0xaef4b053
4c:	00			

4d: [GDTR HERE]

0:	bb 4c	80					mov	bx,0x804d ; 0x8000 + 0x4D SMM entry point + 0x4D
3:	2e a1	. d8	fd				mov	ax,cs:0xfdd8 ; DSC_OFFSET + 0xD8
7:	48						dec	ax
8:	2e 89	07					mov	WORD PTR cs:[bx],ax
b:	2e 66	a1	dØ	fd			mov	<pre>eax,cs:0xfdd0 ; DSC_OFFSET + 0xD0</pre>
10:	2e 66	89	47	02			mov	DWORD PTR cs:[bx+0x2],eax
15:	2e 66	0f	01	17			lgdtd	cs:[bx];
1a:	b8 Ø8	00					mov	ax,0x8
1d:	2e 89	47	fe				mov	WORD PTR cs:[bx-0x2],ax
21:	66 bf	00	30	f4	ae		mov	edi,0xaef43000
27:	66 67	' 8d	87	53	80	00	lea	eax,[edi+0x8053]
2e:	00							
2f:	2e 66	89	47	fa			mov	DWORD PTR cs:[bx-0x6],eax
34:	0f 20) c3					mov	ebx,cr0
37:	66 81	. e3	f3	ff	fa	9f	and	ebx,0x9ffafff3
3e:	66 83	cb	23				or	ebx,0x23
42:	0f 22	c3					mov	cr0,ebx
45:	66 ea	53	bØ	f4	ae	08	jmp	0x8:0xaef4b053
4c:	00							
	Contraction of the second s	1000		12				

4d: [GDTR HERE]

_	0:	bb 4d 80	mov	bx,0x804d ; 0x8000 + 0x4D SMM entry point + 0x4D
	3:	2e a1 d8 fd	mov	ax,cs:0xfdd8 ; DSC_OFFSET + 0xD8
	7:	48	dec	ax
	8:	2e 89 07	mov	WORD PTR cs:[bx],ax
	b:	2e 66 a1 d0 fd	mov	eax,cs:0xfdd0 ; DSC_OFFSET + 0xD0
	10:	2e 66 89 47 02	mov	DWORD PTR cs:[bx+0x2],eax
	15:	2e 66 0f 01 17	lgdtd	cs:[bx];
	1a:	b8 08 00	mov	ax,0x8
	1d:	2e 89 47 fe	mov	WORD PTR cs:[bx-0x2],ax
	21:	66 bf 00 30 f4 ae	mov	edi,0xaef43000
	27:	66 67 8d 87 53 80	00 lea	eax,[edi+0x8053]
	2e:	00		
	2f:	2e 66 89 47 fa	mov	DWORD PTR cs:[bx-0x6],eax
	34:	0f 20 c3	mov	ebx,cr0
	37:	66 81 e3 f3 ff fa	9f and	ebx,0x9ffafff3
	3e:	66 83 cb 23	or	ebx , 0x23
	42:	0f 22 c3	mov	cr0,ebx
	45:	66 ea 53 b0 f4 ae	08 jmp	0x8:0xaef4b053
	4c:	00		

[GDTR HERE]

4d:

0:	bb 4d 80	mov	bx,0x804d ; 0x8000 + 0x4D	MM entry point + 0x4D
3:	2e a1 d8 fd	mov	ax,cs:0xfdd8 ; DSC_OFFSET + 0xD8	
7:	48	dec	ax	
8:	2e 89 07	mov	WORD PTR cs:[bx],ax	
b:	2e 66 a1 d0 fd	mov	eax,cs:0xfdd0 ; DSC_OFFSET + 0xD0	
10:	2e 66 89 47 02	mov	DWORD PTR cs:[bx+0x2],eax	
15:	2e 66 0f 01 17	lgdtd	cs:[bx];	oads GDTR
1a:	b8 08 00	mov	ax,0x8	
1d:	2e 89 47 fe	mov	WORD PTR cs:[bx-0x2],ax	
21:	66 bf 00 30 f4 ae	mov	edi,0xaef43000	
27:	66 67 8d 87 53 80 00	lea	eax,[edi+0x8053]	
2e:	00			
2f:	2e 66 89 47 fa	mov	DWORD PTR cs:[bx-0x6],eax	
34:	0f 20 c3	mov	ebx,cr0	
37:	66 81 e3 f3 ff fa 9f	and	ebx,0x9ffafff3	
3e:	66 83 cb 23	or	ebx,0x23	
42:	0f 22 c3	mov	cr0,ebx	
45:	66 ea 53 b0 f4 ae 08	jmp	0x8:0xaef4b053	
4c:	00			

[GDTR HERE]

4d:

0:	bb 4d 80	mov	bx,0x804d ; 0x8000 + 0x4D	SMM entry point + 0x4D
3:	2e a1 d8 fd	mov	ax,cs:0xfdd8 ; DSC_OFFSET + 0xD8	
7:	48	dec	ax	
8:	2e 89 07	mov	WORD PTR cs:[bx],ax	
b:	2e 66 a1 d0 fd	mov	eax,cs:0xfdd0 ; DSC_OFFSET + 0xD0	
10:	2e 66 89 47 02	mov	DWORD PTR cs:[bx+0x2],eax	
15:	2e 66 0f 01 17	lgdtd	cs:[bx];	Loads GDTR
1a:	b8 08 00	mov	ax,0x8	
1d:	2e 89 47 fe	mov	WORD PTR cs:[bx-0x2],ax	
21:	66 bf 00 30 f4 ae	mov	edi,0xaef43000	
27:	66 67 8d 87 53 80 00	lea	eax,[edi+0x8053]	
2e:	00			
2f:	2e 66 89 47 fa	mov	DWORD PTR cs:[bx-0x6],eax	
34:	0f 20 c3	mov	ebx,cr0	
37:	66 81 e3 f3 ff fa 9f	and	ebx,0x9ffafff3	
3e:	66 83 cb 23	or	ebx,0x23	
42:	0f 22 c3	mov	cr0,ebx	
45:	66 ea 53 b0 f4 ae 08	jmp	0x8:0xaef4b053	Jumps to 32-bit (protected) code
4c ·	00			

<u>4c: 00</u> 4d: [GDTR HERE]

IOActive

٥·	bb 4d 80	mov	hx @x804d + @x8000 + @x4D	SMM entry point + $0x4D$
- 0.		mov		Similar entry point + 0x+D
3:	26 41 08 10	mov	ax, cs: 0x1008 ; DSC_OFFSET + 0xD8	
7:	48	dec	ax	
8:	2e 89 07	mov	WORD PTR cs:[bx],ax	
b:	2e 66 a1 d0 fd	mov	eax,cs:0xfdd0 ; DSC_0FFSET + 0xD0	
10:	2e 66 89 47 02	mov	DWORD PTR cs:[bx+0x2],eax	
15:	2e 66 0f 01 17	lgdtd	cs:[bx];	Loads GDTR
1a:	b8 08 00	mov	ax,0x8	
1d:	2e 89 47 fe	mov	WORD PTR cs:[bx-0x2],ax	
21:	66 bf 00 30 f4 ae	mov	edi,0xaef43000	
27:	66 67 8d 87 53 80 00	lea	eax,[edi+0x8053]	
2e:	00			
2f:	2e 66 89 47 fa	mov	DWORD PTR cs:[bx-0x6],eax	
34:	0f 20 c3	mov	ebx,cr0	
37:	66 81 e3 f3 ff fa 9f	and	ebx,0x9ffafff3	
3e:	66 83 cb 23	or	ebx,0x23	
42:	0f 22 c3	mov	cr0,ebx	
45:	66 ea 53 b0 f4 ae 08	jmp	0x8:0xaef4b053	Jumps to 32-bit (protected) code
4c:	00			
4d:	[GDTR HERE]			

We need to control the BAR of the overlapped device at offset 0x4D

Problems with the APIC

• The system becomes unstable when the APIC is moved

 The APIC registers are not useful for taking control at the SMM entry point

APIC Registers

>>> rdmsr @)x	1b																	
-> MSR:[000	00	001k	b]:	fee	e008	300													
>>> physmen	n :	r Ø2	xfee	e000	000	0x2	100												
0xfee00000		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	I	
0xfee00010		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
0xfee00020		00	00	00	06	00	00	00	06	00	00	00	06	00	00	00	06		
0xfee00030		10	00	05	80	10	00	05	80	10	00	05	80	10	00	05	80		
0xfee00040		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	I	
0xfee00050		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	I	Reserved region
0xfee00060		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	I	Writes are discarded
0xfee00070		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		·····
0xfee00080		10	00	00	00	10	00	00	00	10	00	00	00	10	00	00	00		
0xfee00090		10	00	00	00	10	00	00	00	10	00	00	00	10	00	00	00		
0xfee000a0		10	00	00	00	10	00	00	00	10	00	00	00	10	00	00	00		
0xfee000b0		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
0xfee000c0		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
0xfee000d0		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
0xfee000e0		ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff		
0xfee000f0		ff	01	00	00	ff	01	00	00	ff	01	00	00	ff	01	00	00		

Introducing the SPI controller

SPI controller

• Used to read / write / erase the SPI flash

- Key features:
 - ^o The BAR can be relocated over the SMM entry point
 - ^o Portions of the BAR are attacker-controlled
 - ^o Takes precedence over SMRAM when TClose is enabled

🔣 M	lemor	у															
	bi		2	ġ.	å			byte 8bit	wc 16	ord d bit 3	word 2 bit	ì					Refresh
	bbA	ress	s = 0	0000	0000		2110	00									Test
																	Info Text
0	00	01	02	03	04	05	06	07	08	09	0A	OB	0C	0D	0E	0F	0 1 2 3 4 5 6 7 8 9 A B C D E F
00	00	00	20	0F	00	00	00	00	00	00	00	00	00	00	22	02	
10	06	20	04	04	06	04	9F	05	03	0B	0A	02	FF	9A	00	ЗB	
20	12	07	33	31	08	20	20	20	0C	14	06	0E	C0	D4	00	80	
30	C0	14	08	46	03	00	00	00	FC	FC	FC	FC	FC	88	00	00	
40	3B	6B	BB	EB	00	00	00	00	00	00	00	00	42	00	12	00	; k 3 ÷ B L
50	00	12	13	0C	3C	6C	BC	EC	08	46	00	00	00	00	00	00	
60	00	00	00	00	FD	00	00	00	00	00	00	00	00	00	00	00	•
70	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
80	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
90	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
AU	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
FO	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
FO	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
Hard	ware	50	50	50		50			00	00		00		00			

SPI BAR

GDTR is loaded from offset 0x4D

• Controllable fields:

• 0x4C-50: FCH::LPCPCICFG::memoryrange

Debugging setup

Debugging Setup

BAR buffer

PCI Squirrel with PCILeech firmwareUsed for persistent memory across boot cycles

- SMM backdoor
 - ^o Used for modifying code in SMM on-demand

Exploitation

Attempt #1

©2024 IOActive, Inc. All Rights Reserved.

GDT far jmp wrap-around

GDT far jmp wrap-around

It worked, but the system crashed... why?

The SMM save state

- The SMM save state is automatically saved upon entering SMM and restored when leaving it
 - ^o With TClose enabled these writes are dropped
 - ^o The SMM save state from the last SMI is still there
- Solution: Trigger SMI twice
 - ^o Once without TClose to prime SMM save state
 - Once with TClose to trigger bug
- Does not require overwriting SMM save state values

Attempt #2

The system crashed again... why?

Enabling TClose

Access Specific Window Help Image: Imag	_ 8
Image:	Refres
Image:	Refres
MTRR User Register Name Address CPU1 CPU2 CPU3 CPU4 CPU5 CPU MTRR_DEF_TYPE 0x2FF 000000000000000000000000000000000000	
Hegister Name Address CPU1 CPU2 CPU3 CPU4 CPU5 CPU MTRR_DEF_TYPE 0x2FF 000000000000000000000000000000000000	
MTRR_DEF_TYPE 0x2FF 000000000000000000000000000000000000	6
SMM_BASE 0x00000000000000000000000000000000000	0000000
SMM_MASK 0x000FFFFFF006603 0000FFFFFF006603	EF42000
Edit CPU1 MSR 0xC0010113 × 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32	F006603
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1	
00 00 FF FF Dall CPUs	
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 Uone	
FF 00 66 0F Cancel	

©2024 IOActive, Inc. All Rights Reserved.

Bingo...

VW - Read & Write Utility v1.7 - [CPU MSR Registers]							- 0	
Access Specific	Window Help							- 8 ×
I	index space	🙀 🔝 💽 📓	P 🛄 🌌 📠					
		5AA MPS E820 ED	9 🔳 💵 🙆					
	•							Refresh
MTRR User								
Register Name	Address	CPU1	CPU2	CPU3	CPU4	CPU5	C	PU6
MTRR_DEF_TYPE	0x2FF	000000000000000000	000000000000000000	0000000000000000000	000000000000000000	000000000000000000	0000000	0000000000
SMM_BASE	0xC0010111	00000000CEE38000	00000000CEE3A000	00000000CEF3C000	00000000CEF3E000	00000000CEF40000	0000000	0CEF42000
SMM_MASK	0xC0010113	0000FFFFFF00660F	0000FFFFFF00660F	0000FFFFFF006603	0000FFFFFF006603	0000FFFFFF006603	0000FFF	FFF006603
				-				

Symmetric Multi-Threading

• Physical cores are split into two logical cores (threads)

Some resources are shared between logical cores
 SMM base MSR is separate but
 TSEG mask MSR is not

• Is it an issue if only one core goes into SMM at a time?

Normal mode

xor	eax,	eax
xor	eax,	eax

Normal mode

xor	eax,	eax
xor	eax,	eax

Normal mode

xor	eax,	eax
xor	eax,	eax

Normal mode

xor	eax,	eax
xor	eax,	eax

Normal mode

xor eax, eax xor eax, eax smi

Normal mode

xor	eax,	eax
xor	eax,	eax

Normal mode

xor	eax,	eax
xor	eax,	eax

Normal mode

xor	eax,	eax
xor	eax,	eax

Normal mode

xor eax, eax xor eax, eax smi

Normal mode

xor	eax,	eax
xor	eax,	eax

Normal mode

ХО	r	e	а	X	ر	e	а	Х
хо	r	e	а	Х	,	e	а	Х

Normal mode

xor	eax,	eax
xor	eax,	eax

SMM mode	SMM mode	SMM mode	SMM mode
xor eax, eax xor eax, eax smi	xor eax, eax xor eax, eax	xor eax, eax xor eax, eax	xor eax, eax xor eax, eax
mov bs, 0x804d mov ax, cs:0xfdd8 			

- We assumed that SMIs are local, but they are global
- Initially we thought that:
 - we could control exactly which core enters into SMM first
 - each core would later reach the rendezvous routine and
 - send Inter-Processor-Interrupts (IPI) to bring the rest of the cores into SMM before continuing
- We were wrong: The I/O Hub sends the SMI to all cores at once

Problem summarized

- SMIs make all cores go to SMM at the same time
- TClose is enabled on two logical cores at a time
 They will read 0xFFs since no device is mapped there
 Writes to SMM save state will be dropped
- This will make core 1 triple-fault and crash the system

Tackling the problem

- We had:
 - Control of data fetches on core 0
 - No control of data fetches on core 1
- We tried many things to solve the problem:
 - ^o Finding another device to overlap with the SMM entry point
 - Disabling Simultaneous Multi-Threading (SMT)
 - o Sending an INIT IPI / executing SKINIT to ignore SMIs
 - o Sending an SMI IPI to trigger an SMI on individual cores

Running out of options

- Taking a step back:
 - ^o Our lgdt is the issue
 - What happens if the GDTR is loaded all with FFs?

Let's look into that...

GDTR wrap-around

GDTR wrap-around

Wrap-arounds in x86

- The are two instances of wrap-arounds:
 - The addition between GDT descriptor base and far jmp offset can overflow
 - The addition between the GDTR base and far jmp segment selector can overflow

- We can use the same fake GDT for core 0 and 1
- Added bonus: No need for the SPI BAR remapping

SMM save state (again)

- For core 0 we use the same technique as before
- For core 1 we:
 - Need to bring core 1 into a known / controlled state
 We use kernel synchronization APIs to achieve that
 - Deferred Procedure Calls (DPC) on Windows
 - Symmetric Multi-Processing (SMP) on Linux

Attempt #3

©2024 IOActive, Inc. All Rights Reserved.

bx,0x804d ; 0x8000 + 0x4D ax,cs:0xfdd8 ; DSC_OFFSET + 0xD8 ax WORD PTR cs:[bx],ax eax,cs:0xfdd0 ; DSC_OFFSET + 0xD0 DWORD PTR cs:[bx+0x2],eax lgdtd cs:[bx]; ax,0x8 WORD PTR cs:[bx-0x2],ax edi,0xaef43000 eax,[edi+0x8053] DWORD PTR cs:[bx-0x6],eax ebx,cr0 ebx,0x9ffafff3 ebx,0x23 cr0,ebx 0x8:0xaef4b053

Δ

10 6

10 7

And it worked!

©2024 IOActive, Inc. All Rights Reserved.
Extra steps

- We can execute code in SMM but in protected mode
- Our payload performs the following steps:
 - Reload the GDT to avoid IP misalignments
 - Setup long mode (including page tables)
 - Install an SMI handlers to avoid re-exploiting the issue

DEMO

©2024 IOActive, Inc. All Rights Reserved.

Next attack paths

Next steps depend on the platform configuration

- The firmware is responsable for:
 - Restricting access to the SPI flash (e.g. via ROM Armor)
 - Verifying the firmware chain-of-trust (via Platform Secure Boot)
- If everything is enabled, we can at least break secure boot
- If not, there is potential for firmware implants

11 2

©2024 IOActive, Inc. All Rights Reserved.

Platform security (overview from 2023)

Vendor	Model	PSB State	ROM Armor State
Acer	Swift 3 SF314-42	Not configured	Not configured
Acer	TravelMate P414-41	Not configured	Configured
ASUS	Strix G513QR	Not configured	Not configured
Lenovo	Thinkpad P16s	Configured*	Not configured
Lenovo	IdeaPad 1	Not configured	Not configured
Lenovo	Thinkpad T495s	Not configured	Not configured
Huawei	Matebook D16	Not configured	Not configured
HP	15s	Not configured	Not configured
Microsoft	Surface 4	Configured	Unknown
MSI	Bravo 15	Not configured	Not configured

Platform security continued

 We took a look ROM Armor and Platform Secure Boot before

 See our "Back to the Future with Platform Security" from Hexacon 2023 presentation

<u>https</u> <u>://www.youtube.com/watch?v=xSp38lFQeRE&ab_channel</u> <u>=Hexacon</u>

Outro

©2024 IOActive, Inc. All Rights Reserved.

Affected systems

- Pretty much all of them
 - ^o Ryzen series
 - ^o Ryzen Threadripper series
 - EPYC series
- Total number of affected chips: 100s of millions

AMD advisory AMD-SB-7014 published at
 <u>https://www.amd.com/en/resources/product-security/bulletin/amd</u>
 <u>-sb-7014.html</u>
 11 IOActive.

• AMD:

- A microcode update is available
- ^o Con: Might not cover all affected systems due to product EOL

• OEMs:

- Modify SMM entry point code to detect if TClose bit is enabled and abort execution
- Can be done at the reference code level
- ^o Con: Specific to one OEM or even specific systems
- Users:
 - ^o A hypervisor could be used to trap accesses on the TSEG mask MSR

Hexacon

(Today)

AMD publishes

advisory SB-7014 (9th Aug 2024)

developed

(11th Dec 2023)

©2023 IOActive, Inc. All Rights Reserved.

Conclusions

- The vulnerability has been around for nearly two decades
- The complexity of modern architectures plays in favor of attackers
- The flexibility of segmentation played a crucial role for exploitation
- Exploitation requires in-depth understanding of the architecture

Exploit code will be released mid November

Stay tuned!

Questions?