
Andrew Calvano
Meta Product Security

Ryan Hall
Meta Red Team X

Building a 1-click Exploit
Targeting Messenger for Android

Defense through Offense

Octavian Guzu
Meta Product Security

Agenda

01 Introductions

02 Background

03 Exploitation

04 Mitigations

05 Takeaways/Questions

01 Introductions

01 Introductions

Octavian Guzu

• Product Security Engineer
@Meta, London

• Currently working on
Messenger and Video
Calling security

• Crypto enthusiast,
computer science
background

Ryan Hall

• Offensive Security @Meta,
USA

• Focus on security of 3rd
party software and
hardware

• Vulnerability research, low
level platform/device
security.

Andrew Calvano

• Product Security Engineer
@Meta, USA

• Working on cross-platform
Family of App security with
emphasis on Messenger

• Vulnerability research,
reverse engineering, and
computer science
background

What is Defense through Offense?
Improving security posture through demonstrated compromise of our own software

• Goals:

﹘ Exploit mitigations research

﹘ Identifying flaws in design that only become apparent through exploitation

﹘ Discovering new attack surface

﹘ Building data points for in the wild detection and incident response

• Outcomes:

﹘ Three exercises to date producing ~45 security engineering work streams to harden Meta products

01 Introductions

Step
2

Reintroduce curated vulnerabilities on top of the latest release of the target
software

Step
3

Develop exploitation primitives from subsets of curated vulnerabilities and
build an exploit targeting the vulnerable build by chaining them together

Step
4

Step
1

Curate known vulnerabilities and develop relevant and realistic exploitation
scenarios to investigate (e.g. 0-click messaging vs 1-click calling)

01 Introductions: Defense through Offense Execution

Document the exploit and brainstorm security engineering work streams to
mitigate similar scenarios

Meta Quest 2

Inaugural exercise targeting the
Quest 2 device. The exercise
resulted in the creation of a local
privilege escalation exploit for
VROS. The exploit scenario was
from the perspective of a malicious
or compromised application
installed to VROS.

01 Introduction: Defense through Offense Exercises To Date

Ray-Ban Stories

Second exercise targeting
firmware vulnerabilities on the
Ray-Ban Stories wearable glasses.
The scenario was an over-the-air
proximity based attack. The
exploit allowed an attacker within
Bluetooth range of a Ray-Ban
Stories user to execute code on
the victim’s glasses.

Messenger for Android

Most recent exercise we will be
discussing today. The exercise
created a 1-click calling exploit
targeting the Messenger for
Android application resulting in
remote code execution.

02 Background

02 Background: Messenger Application Introduction

What is Messenger?

Messenger Messaging
Architecture

02 Background: Messenger Messaging Architecture

Msys

• Cross platform messaging stack written in C
• Manages database, accounts, incoming/outgoing messaging, etc.
• E2EE messaging support requiring client side validation of

messaging and media content

Messenger Core Foundations (MCF)

• Core types used by Msys applications
• MCF is an abstraction layer around CoreFoundations

﹘ On Apple platforms, it calls CoreFoundations APIs directly
﹘ On Non-Apple platforms, it calls a cross platform

implementation
• Objects inherit from a base class, are reference counted, and

encode type specific functionality such as initializers and
destructors

Messenger Calling
Architecture
Primarily managed by the Rsys and WebRTC libraries

• Supports both 1:1 and group audio/video calls
• Rsys manages client side signaling and WebRTC
• WebRTC maintains connections to servers/clients and

manages media

Two relevant attack vectors to consider

• Call Signaling
﹘ Communication between clients, infrastructure, and

other clients to manage call state
﹘ Structured Thrift protocol that defines messages

• Call Media
﹘ WebRTC relevant protocols (e.g. RTP, STUN, SCTP) and

audio/video codecs (e.g. OPUS, H264)

02 Background: Messenger Calling Architecture

Spark AR
Spark AR is the AR effect engine powering AR experiences
across Meta products

• AR effects developed in JavaScript

Group calling AR effects are auto enabled for all call
participants when any call participant enables them

• Exploit uses malicious Group AR effect to force victim client
to download and execute it

Multipeer AR effect feature

• Cross-client AR effect network communication
• Our malicious effect uses this to exfiltrate out of bounds

memory to our malicious caller

02 Background: Messenger Spark AR

04 Mitigations

03 Exploitation

Messenger Exploitation Scenario
Scenario: 1-click calling exploit initiated by a malicious caller

• Environment

﹘ Pixel 6a Emulators + Physical Device

﹘ Android 12

• Constraints:

﹘ Threat actor can call their victim in a 1:1 call

﹘ The victim user must answer the call

• Exploitation Goals:

﹘ Execute code after call accept within the victim application

03 Defense through Offense: Social Ops

03 Vulnerabilities

Vulnerability Title Security Impact

Vulnerability 1
(Rsys)

Rsys Apps Vulnerable to Incoming Call Metadata
Spoofing

A malicious user can create a call
appearing as if it is coming from
someone else (e.g. Mom)

Vulnerability 2
(Spark AR)

Out of bounds Read in
SegmentationModule::getForegroundPercent

An AR effect can read out of bounds
on the heap potentially leading to
information disclosure and an ASLR
defeat

Vulnerability 3
(Rsys)

Signaling messages sendable over media data
channel

Malicious calling clients can send
signaling messages P2P that should
be reserved for the server

Vulnerability 4
(Rsys)

Incorrect Signed Integer Comparison Leads to
OOB Write in
UnifiedPlanSdpUpdateSerializer::applyDelta

Out of bounds write on the heap
reachable client-to-client during a
call that can corrupt the heap in a
targeted manner

Curated
Vulnerabilities
Our exploit chains four exploitation
primitives from a set of 4 vulnerabilities.
These vulnerabilities are a mix of issues
crossing different FoA components. All
were internally discovered during
security reviews of Meta code and have
been fixed.

03 Vulnerabilities

Vulnerability Title Security Impact

Vulnerability 1
(Rsys)

Rsys Apps Vulnerable to Incoming Call Metadata
Spoofing

A malicious user can create a call
appearing as if it is coming from
someone else (e.g. Mom)

Vulnerability 2
(Spark AR)

Out of bounds Read in
SegmentationModule::getForegroundPercent

An AR effect can read out of bounds
on the heap potentially leading to
information disclosure and an ASLR
defeat

Vulnerability 3
(Rsys)

Signaling messages sendable over media data
channel

Malicious calling clients can send
signaling messages P2P that should
be reserved for the server

Vulnerability 4
(Rsys)

Incorrect Signed Integer Comparison Leads to
OOB Write in
UnifiedPlanSdpUpdateSerializer::applyDelta

Out of bounds write on the heap
reachable client-to-client during a
call that can corrupt the heap in a
targeted manner

Curated
Vulnerabilities
Our exploit chains four exploitation
primitives from a set of 4 vulnerabilities.
These vulnerabilities are a mix of issues
crossing different FoA components. All
were internally discovered during
security reviews of Meta code and have
been fixed.

03 Vulnerabilities

Vulnerability Title Security Impact

Vulnerability 1
(Rsys)

Rsys Apps Vulnerable to Incoming Call Metadata
Spoofing

A malicious user can create a call
appearing as if it is coming from
someone else (e.g. Mom)

Vulnerability 2
(Spark AR)

Out of bounds Read in
SegmentationModule::getForegroundPercent

An AR effect can read out of bounds
on the heap potentially leading to
information disclosure and an ASLR
defeat

Vulnerability 3
(Rsys)

Signaling messages sendable over media data
channel

Malicious calling clients can send
signaling messages P2P that should
be reserved for the server

Vulnerability 4
(Rsys)

Incorrect Signed Integer Comparison Leads to
OOB Write in
UnifiedPlanSdpUpdateSerializer::applyDelta

Out of bounds write on the heap
reachable client-to-client during a
call that can corrupt the heap in a
targeted manner

Curated
Vulnerabilities
Our exploit chains four exploitation
primitives from a set of 4 vulnerabilities.
These vulnerabilities are a mix of issues
crossing different FoA components. All
were internally discovered during
security reviews of Meta code and have
been fixed.

03 Vulnerabilities

Vulnerability Title Security Impact

Vulnerability 1
(Rsys)

Rsys Apps Vulnerable to Incoming Call Metadata
Spoofing

A malicious user can create a call
appearing as if it is coming from
someone else (e.g. Mom)

Vulnerability 2
(Spark AR)

Out of bounds Read in
SegmentationModule::getForegroundPercent

An AR effect can read out of bounds
on the heap potentially leading to
information disclosure and an ASLR
defeat

Vulnerability 3
(Rsys)

Signaling messages sendable over media data
channel

Malicious calling clients can send
signaling messages P2P that should
be reserved for the server

Vulnerability 4
(Rsys)

Incorrect Signed Integer Comparison Leads to
OOB Write in
UnifiedPlanSdpUpdateSerializer::applyDelta

Out of bounds write on the heap
reachable client-to-client during a
call that can corrupt the heap in a
targeted manner

Curated
Vulnerabilities
Our exploit chains four exploitation
primitives from a set of 4 vulnerabilities.
These vulnerabilities are a mix of issues
crossing different FoA components. All
were internally discovered during
security reviews of Meta code and have
been fixed.

03 Vulnerabilities

Vulnerability Title Security Impact

Vulnerability 1
(Rsys)

Rsys Apps Vulnerable to Incoming Call Metadata
Spoofing

A malicious user can create a call
appearing as if it is coming from
someone else (e.g. Mom)

Vulnerability 2
(Spark AR)

Out of bounds Read in
SegmentationModule::getForegroundPercent

An AR effect can read out of bounds
on the heap potentially leading to
information disclosure and an ASLR
defeat

Vulnerability 3
(Rsys)

Signaling messages sendable over media data
channel

Malicious calling clients can send
signaling messages P2P that should
be reserved for the server

Vulnerability 4
(Rsys)

Incorrect Signed Integer Comparison Leads to
OOB Write in
UnifiedPlanSdpUpdateSerializer::applyDelta

Out of bounds write on the heap
reachable client-to-client during a
call that can corrupt the heap in a
targeted manner

Curated
Vulnerabilities
Our exploit chains four exploitation
primitives from a set of 4 vulnerabilities.
These vulnerabilities are a mix of issues
crossing different FoA components. All
were internally discovered during
security reviews of Meta code and have
been fixed.

Malicious
Caller

03 Exploitation: Chained Primitives Achieve Remote Code Execution

Victim
Callee

Send a shared library as an E2EE attachment (Primitive 1)

Ring callee with spoofed caller metadata and heap spray payload
(Primitive 2)

Victim answers the call

Auto-enable malicious AR effect for all participants (Primitive 3)

(Chained with Primitive 1 planted library)

Execute control flow hijack using out of bounds write (Primitive 4)

Disclosed Memory Contents

Malicious
Caller

03 Exploitation: Primitive 1

Victim
Callee

Send a shared library as an E2EE attachment (Primitive 1)

Ring callee with spoofed caller metadata and heap spray payload
(Primitive 2)

Victim answers the call

Auto-enable malicious AR effect for all participants (Primitive 3)

Execute control flow hijack using out of bounds write (Primitive 4)

Disclosed Memory Contents

(Chained with Primitive 1 planted library)

Send a shared library as
an E2EE attachment
This primitive exploits E2EE attachments to send a shared
library that is prefetched and stored on to the victim file
system.

Downloaded attachments have a predictable file path on the
victim file system based on SHA256 hash of plaintext
contents

• The exploit knows this path deterministically since it
controls the plaintext contents of the incoming
attachment

The exploit sends the shared library before it initiates the call
to ensure it will be available on the file system before the
control flow hijack

03 Exploitation: Primitive 1

Malicious
Caller

03 Exploitation: Primitive 2

Victim
Callee

Send a shared library as an E2EE attachment (Primitive 1)

Ring callee with spoofed caller metadata and heap spray payload
(Primitive 2)

Victim answers the call

Auto-enable malicious AR effect for all participants (Primitive 3)

Disclosed Memory Contents

Execute control flow hijack using out of bounds write (Primitive 4)

Ring callee with spoofed
caller metadata
Rsys“Ring Request” signaling message encodes an incoming
call action on Rsys clients

• This is generated by the server after processing a caller
generated “Join Request” signaling message

Inside of the ring request we have the appMessages field:

﹘ Caller controlled vector of (topic, data) pairs carried
from the Join Request

Vulnerability 1: Rsys Apps Vulnerable to Incoming Call
Metadata Spoofing

• appMessages contained the “call_metadata” topic an
attacker could have supplied the caller name and profile
picture URI
﹘ The UI displayed whatever contents were in this field

03 Exploitation: Primitive 2

Attacker sends

Victim Receives

Proof of concept code on modified caller client

03 Exploitation: Primitive 2

Victim Client

Proof of concept code on modified caller client

03 Exploitation: Primitive 2

Victim Client

Topic set to call_metadata

Proof of concept code on modified caller client

03 Exploitation: Primitive 2

Victim Client

Payload set to spoofed caller
information

Proof of concept code on modified caller client

03 Exploitation: Primitive 2

Victim Client

DataMessage packaged into
appMessages Thrift payload
and sent to victim client

Proof of concept code on modified caller client

03 Exploitation: Primitive 2

Victim Client

Victim Client updates call
model with spoofed caller
information

Proof of concept code on modified caller client

03 Exploitation: Primitive 2

Victim Client

Victim Client updates call
model with spoofed caller
information

Interlude: Scudo
Scudo is the default heap allocator used on Android >= 11

• When you call malloc and free on these platforms you are
using scudo

Scudo consists of the following security features:

• Checksum of heap chunk metadata to detect corruption on
free

• Sized base class regions based on requested allocation size
﹘ Guard pages between regions

• Non-determinism
﹘ Randomized selection of chunk to fulfill allocation

within class region

03 Exploitation: Scudo Interlude

References:
https://www.l3harris.com/newsroom/editorial/2023/10/scudo-hardened-allocator-unofficial-internals-
documentation
https://www.synacktiv.com/en/publications/behind-the-shield-unmasking-scudos-defenses

https://www.l3harris.com/newsroom/editorial/2023/10/scudo-hardened-allocator-unofficial-internals-documentation
https://www.l3harris.com/newsroom/editorial/2023/10/scudo-hardened-allocator-unofficial-internals-documentation
https://www.synacktiv.com/en/publications/behind-the-shield-unmasking-scudos-defenses

Ring Callee: MCFData
Heap Spraying

03 Exploitation: Primitive 2

Ring Request

MCFData

Leverage appMessages list in the Ring Request to spray the heap
with attacker controlled data

• appMessages are translated into (MCFString, MCFData) pairs
allocated on the Scudo heap

• Attacker has control over data and size
• Many can be supplied in a single request(~1MB max)
• They persist in a call session for the duration of the call
• They are freed when the call ends

MCF types contain a type table pointer

• This will be our corruption target for our control flow hijack
primitive later on in the chain

Ring Callee: MCFData
Heap Spraying

03 Exploitation: Primitive 2

Ring Request

MCFData

Leverage appMessages list in the Ring Request to spray the heap
with attacker controlled data

• appMessages are translated into (MCFString, MCFData) pairs
allocated on the Scudo heap

• Attacker has control over data and size
• Many can be supplied in a single request(~1MB max)
• They persist in a call session for the duration of the call
• They are freed when the call ends

MCF types contain a type table pointer

• This will be our corruption target for our control flow hijack
primitive later on in the chain

Ring Callee: MCFData
Heap Spraying

Scudo allocates from a class region in TransferBatches

• Chunks within each TransferBatch are randomly shuffled
• Each TransferBatch is allocated from the Region in a linear

fashion

Spraying many back to back allocations will result in large
contiguous attacker controlled block

03 Exploitation: Primitive 2

Ring Callee: MCFData
Heap Spraying

03 Exploitation: Primitive 2

Scudo allocates from a class region in TransferBatches

• Chunks within each TransferBatch are randomly shuffled
• Each TransferBatch is allocated from the Region in a linear

fashion

Spraying many back to back allocations will result in large
contiguous attacker controlled block

Malicious
Caller

Victim
Callee

Send a shared library as an E2EE attachment (Primitive 1)

Ring callee with spoofed caller metadata and heap spray payload
(Primitive 2)

Victim answers the call

Auto-enable malicious AR effect for all participants (Primitive 3)

Disclosed Memory Contents

Execute control flow hijack using out of bounds write (Primitive 4)

03 Exploitation: Primitive 2

Malicious
Caller

Victim
Callee

Send a shared library as an E2EE attachment (Primitive 1)

Ring callee with spoofed caller metadata and heap spray payload
(Primitive 2)

Victim answers the call

Auto-enable malicious AR effect for all participants (Primitive 3)

Disclosed Memory Contents

Execute control flow hijack using out of bounds write (Primitive 4)

03 Exploitation: Primitive 3

Auto-enable malicious
AR effect to defeat
ASLR
Vulnerability 2: Security vulnerability in
SegmentationModule::getForegroundPercent leads to
information disclosure

• Relative backwards out of bounds read of 32-bit value as
float data type

• Exploited via Group AR effect JavaScript program

The exploit AR effect uses this to defeat ASLR by identifying a
library address we will use for JOP gadgets

• Challenges
﹘ Not all 32-bit IEEE-754 floats cast cleanly to integers

instead producing NaN
﹘ We don’t know where the heap is or how its structured

at time of vulnerability trigger

OOB Read Vulnerability Snippet

OOB Read Exploitation by AR Effect

03 Exploitation: Primitive 3

Auto-enable malicious
AR effect to defeat
ASLR
Vulnerability 2: Security vulnerability in
SegmentationModule::getForegroundPercent leads to
information disclosure

• Relative backwards out of bounds read of 32-bit value as
float data type

• Exploited via Group AR effect JavaScript program

The exploit AR effect uses this to defeat ASLR by identifying a
library address we will use for JOP gadgets

• Challenges
﹘ Not all 32-bit IEEE-754 floats cast cleanly to integers

instead producing NaN
﹘ We don’t know where the heap is or how its structured

at time of vulnerability trigger

OOB Read Vulnerability Snippet

OOB Read Exploitation by AR Effect

03 Exploitation: Primitive 3

MaskId int used to read
foregroundPercent_ vector
OOB in C++

Auto-enable malicious
AR effect to defeat
ASLR

OOB Read Vulnerability Snippet

OOB Read Exploitation by AR Effect

03 Exploitation: Primitive 3

Idx supplied in JS program to
trigger C++ OOB Read

Vulnerability 2: Security vulnerability in
SegmentationModule::getForegroundPercent leads to
information disclosure

• Relative backwards out of bounds read of 32-bit value as
float data type

• Exploited via Group AR effect JavaScript program

The exploit AR effect uses this to defeat ASLR by identifying a
library address we will use for JOP gadgets

• Challenges
﹘ Not all 32-bit IEEE-754 floats cast cleanly to integers

instead producing NaN
﹘ We don’t know where the heap is or how its structured

at time of vulnerability trigger

Auto-enable malicious
AR effect to defeat
ASLR

03 Exploitation: Primitive 3

• We can read two 32-bit floats to get a 64-bit integer
relative out of bounds read.

• We must handle the case where one of the 32-bit floats
does not cast properly producing NaN
﹘ This introduces some reliability issues since we can not

expect a 100% success rate for our reads

Auto-enable malicious
AR effect to defeat
ASLR

03 Exploitation: Primitive 3

Next we must turn the relative 64-bit integer out of bounds
read into a 64-bit arbitrary out of bounds read

Our vector size we are reading OOB from is 12 bytes in size
• Implication: we are indexing relative to allocations 16 bytes

or less based on Scudo bin sizes

Consider our primitive’s behavior relative to this vector base

oob_read(idx) = read32(vector_base + idx * 4)

If we knew the address of our vector base we could turn this
primitive into the following

read32(address) = oob_read((address - vector_base)/4)

Auto-enable malicious
AR effect to defeat
ASLR

03 Exploitation: Primitive 3

How we find our vector base?
• Some objects store the address of their own heap chunk

inside the object.
﹘ For example: linked lists, objects with internal buffers.

• Heuristic
﹘ Scan heap relative to vector looking for self-referential

heap addresses
﹘ Scudo uses tagged pointers: top byte set to 0xb4
﹘ Scudo heap chunks are 16-bit aligned.
﹘ Scudo heap pointers have high entropy, so if we

calculate the entropy of bits [4..39] of the pointer,
we can ignore any low entropy pointers

﹘ Compute candidate vector base address by accounting
for OOB index offset and scanned self-referential heap
address

﹘ Store in a frequency table
﹘ Pick most frequent address as vector base

Auto-enable malicious
AR effect to defeat
ASLR

03 Exploitation: Primitive 3

We now have an arbitrary read and can start searching for a
library we want an address of for JOP gadget computation.

• We will search for libcoldstart.so by identifying MCFData
objects on the heap
﹘ MCFData contains a type table pointer pointing to .data

within libcoldstart.so

To perform the search we first enumerate scudo bins

1. Scan for all heap pointers adjacent to our OOB vector.
2. Use the arbitrary read primitive to read the Scudo chunk

metadata header.
3. Validate that the header is a valid Scudo header.

a. Optionally, check if the following chunk is also a valid
Scudo chunk based on the chunk size.

4. Store the heap address into a list of heap addresses per
Scudo bin.

Auto-enable malicious
AR effect to defeat
ASLR

03 Exploitation: Primitive 3

Now that we have enumerated the scudo bins we can start
looking for MCFData objects in memory to find libcoldstart.so
offsets

• MCFData is convenient to search for since it has a very
predictable structure with expected values in memory

• We now have our ASLR defeat identifying libcoldstart.so
offset through _typeID in scanned object

Auto-enable malicious
AR effect to defeat
ASLR

03 Exploitation: Primitive 3

Now that we have enumerated the scudo bins we can start
looking for MCFData objects in memory to find libcoldstart.so
offsets

• MCFData is convenient to search for since it has a very
predictable structure with expected values in memory

• We now have our ASLR defeat identifying libcoldstart.so
offset through _typeID in scanned object

Iterate over each scudo bin
address and perform search
for MCFData

Auto-enable malicious
AR effect to defeat
ASLR

03 Exploitation: Primitive 3

Now that we have enumerated the scudo bins we can start
looking for MCFData objects in memory to find libcoldstart.so
offsets

• MCFData is convenient to search for since it has a very
predictable structure with expected values in memory

• We now have our ASLR defeat identifying libcoldstart.so
offset through _typeID in scanned object

Pattern match the scanned
memory for MCFData
expected values (TypeID
offset + reasonable ref
counts)

Auto-enable malicious
AR effect: Controlled
object placement

The exploit requires the AR effect to allocate an object
structured in a certain way that we can use in our subsequent
JOP chain

• The effect sprays objects on the heap using Uint8 arrays
and identifies them using the arbitrary read

• Then the effects modifies one of the objects with controlled
data for the JOP chain representing a fake MCFRuntime
class

After the address of the controlled object is obtained using the
arbitrary read primitive the AR effect sends both the
libcoldstart.so offset and the object address to the malicious
client

• This is accomplished using the multipeer feature which
sends the data over the network

03 Exploitation: Primitive 3

Spray Uint8Array

Auto-enable malicious
AR effect: Controlled
object placement

The exploit requires the AR effect to allocate an object
structured in a certain way that we can use in our subsequent
JOP chain

• The effect sprays objects on the heap using Uint8 arrays
and identifies them using the arbitrary read

• Then the effects modifies one of the objects with controlled
data for the JOP chain representing a fake MCFRuntime
class

After the address of the controlled object is obtained using the
arbitrary read primitive the AR effect sends both the
libcoldstart.so offset and the object address to the malicious
client

• This is accomplished using the multipeer feature which
sends the data over the network

03 Exploitation: Primitive 3

Use arbitrary read to located sprayed
objects

Auto-enable malicious
AR effect: Controlled
object placement

The exploit requires the AR effect to allocate an object
structured in a certain way that we can use in our subsequent
JOP chain

• The effect sprays objects on the heap using Uint8 arrays
and identifies them using the arbitrary read

• Then the effects modifies one of the objects with controlled
data for the JOP chain representing a fake MCFRuntime
class

After the address of the controlled object is obtained using the
arbitrary read primitive the AR effect sends both the
libcoldstart.so offset and the object address to the malicious
client

• This is accomplished using the multipeer feature which
sends the data over the network

03 Exploitation: Primitive 3

Overwrite sprayed objects with JOP chain payload

Auto-enable malicious
AR effect: Controlled
object placement

The exploit requires the AR effect to allocate an object
structured in a certain way that we can use in our subsequent
JOP chain

• The effect sprays objects on the heap using Uint8 arrays
and identifies them using the arbitrary read

• Then the effects modifies one of the objects with controlled
data for the JOP chain representing a fake MCFRuntime
class

After the address of the controlled object is obtained using the
arbitrary read primitive the AR effect sends both the
libcoldstart.so offset and the object address to the malicious
client

• This is accomplished using the multipeer feature which
sends the data over the network

03 Exploitation: Primitive 3

Leak object addresses over the network using Multipeer

Malicious
Caller

Victim
Callee

Send a shared library as an E2EE attachment (Primitive 1)

Ring callee with spoofed caller metadata and heap spray payload
(Primitive 2)

Victim answers the call

Auto-enable malicious AR effect for all participants (Primitive 3)

Disclosed Memory Contents

Execute control flow hijack using out of bounds write (Primitive 4)

03 Exploitation: Primitive 4

Execute control flow
hijack using out of
bounds write

Out of bounds write requires two vulnerabilities

03 Exploitation: Primitive 4

Execute control flow
hijack using out of
bounds write

Out of bounds write requires two vulnerabilities

Vulnerability 3: Signaling messages sendable over media data
channel

• Capped at 1024 bytes per send over RTP data channel
• One-shot per call due to state machine alterations

03 Exploitation: Primitive 4

Execute control flow
hijack using out of
bounds write

03 Exploitation: Primitive 4

Vulnerability 3: Thrift
Signaling Message Payload

Out of bounds write requires two vulnerabilities

Vulnerability 3: Signaling messages sendable over media data
channel

• Capped at 1024 bytes per send over RTP data channel
• One-shot per call due to state machine alterations

Execute control flow
hijack using out of
bounds write

03 Exploitation: Primitive 4

Out of bounds write requires two vulnerabilities

Vulnerability 3: Signaling messages sendable over media data
channel

• Capped at 1024 bytes per send over RTP data channel
• One-shot per call due to state machine alterations

Vulnerability 4: Incorrect Signed Integer Comparison Leads to
OOB Write in UnifiedPlanSdpUpdateSerializer::applyDelta

• Reachable using SessionDescriptionUpdate signaling
payload from Vulnerability 3

• Backwards relative from from std::vector base
• Controlled index up to signed int min
• Controlled values written out of bounds

﹘ 3x std::string overwrite

Execute control flow
hijack using out of
bounds write

03 Exploitation: Primitive 4

Out of bounds write requires two vulnerabilities

Vulnerability 3: Signaling messages sendable over media data
channel

• Capped at 1024 bytes per send over RTP data channel
• One-shot per call due to state machine alterations

Vulnerability 4: Incorrect Signed Integer Comparison Leads to
OOB Write in UnifiedPlanSdpUpdateSerializer::applyDelta

• Reachable using SessionDescriptionUpdate signaling
payload from Vulnerability 3

• Backwards relative from from std::vector base
• Controlled index up to signed int min
• Controlled values written out of bounds

﹘ 3x std::string overwrite

Vulnerability 4: OOB Write
Snippet

Execute control flow
hijack using out of
bounds write

03 Exploitation: Primitive 4

Out of bounds write requires two vulnerabilities

Vulnerability 3: Signaling messages sendable over media data
channel

• Capped at 1024 bytes per send over RTP data channel
• One-shot per call due to state machine alterations

Vulnerability 4: Incorrect Signed Integer Comparison Leads to
OOB Write in UnifiedPlanSdpUpdateSerializer::applyDelta

• Reachable using SessionDescriptionUpdate signaling
payload from Vulnerability 3

• Backwards relative from from std::vector base
• Controlled index up to signed int min
• Controlled values written out of bounds

﹘ 3x std::string overwrite

Position Negative i32 from
Thrift results in OOB vector
reference

Execute control flow
hijack using out of
bounds write

03 Exploitation: Primitive 4

Out of bounds write requires two vulnerabilities

Vulnerability 3: Signaling messages sendable over media data
channel

• Capped at 1024 bytes per send over RTP data channel
• One-shot per call due to state machine alterations

Vulnerability 4: Incorrect Signed Integer Comparison Leads to
OOB Write in UnifiedPlanSdpUpdateSerializer::applyDelta

• Reachable using SessionDescriptionUpdate signaling
payload from Vulnerability 3

• Backwards relative from from std::vector base
• Controlled index up to signed int min
• Controlled values written out of bounds

﹘ 3x std::string overwrite

3x std::string OOB write
relative to vector base

std::string short
string optimization
constructs in place
(0x17 data + 0x1
byte of size)

Control flow hijack using
out of bounds write
The exploit can perform the out of bounds write but now the
question is “What do we corrupt?”

• Answer: The sprayed MCFData objects from Primitive 2

The sprayed MCFData objects are sized such that they are
allocated in the same Scudo region (0x160) as the indexed
vector

• Note: Scudo is non deterministic
﹘ Exploit is not 100% reliable

﹘ We increased probability of success by spraying
many MCFData objects

The exploit structures the overwrite to corrupt a type table
pointer in an MCFData object to point to the controlled object
from Primitive 3 (ARFX)

﹘ At call end, the object will be freed calling a fake finalize
function pointer specified in the controlled object

03 Exploitation: Primitive 4

Control flow hijack using
out of bounds write

Corruption Target is a Sprayed
MCFData object

03 Exploitation: Primitive 4

The exploit can perform the out of bounds write but now the
question is “What do we corrupt?”

• Answer: The sprayed MCFData objects from Primitive 2

The sprayed MCFData objects are sized such that they are
allocated in the same Scudo region (0x160) as the indexed
vector

• Note: Scudo is non deterministic
﹘ Exploit is not 100% reliable

﹘ We increased probability of success by spraying
many MCFData objects

The exploit structures the overwrite to corrupt a type table
pointer in an MCFData object to point to the controlled object
from Primitive 3 (ARFX)

﹘ At call end, the object will be freed calling a fake finalize
function pointer specified in the controlled object

Control flow hijack using
out of bounds write

Corruption Target is a Sprayed
MCFData objectFake Type Table in ARFX placed

object

03 Exploitation: Primitive 4

The exploit can perform the out of bounds write but now the
question is “What do we corrupt?”

• Answer: The sprayed MCFData objects from Primitive 2

The sprayed MCFData objects are sized such that they are
allocated in the same Scudo region (0x160) as the indexed
vector

• Note: Scudo is non deterministic
﹘ Exploit is not 100% reliable

﹘ We increased probability of success by spraying
many MCFData objects

The exploit structures the overwrite to corrupt a type table
pointer in an MCFData object to point to the controlled object
from Primitive 3 (ARFX)

﹘ At call end, the object will be freed calling a fake finalize
function pointer specified in the controlled object

Control flow hijack using
out of bounds write

Corruption Target is a Sprayed
MCFData objectFake Type Table in ARFX placed

object

Hijacked finalize fptr

03 Exploitation: Primitive 4

The exploit can perform the out of bounds write but now the
question is “What do we corrupt?”

• Answer: The sprayed MCFData objects from Primitive 2

The sprayed MCFData objects are sized such that they are
allocated in the same Scudo region (0x160) as the indexed
vector

• Note: Scudo is non deterministic
﹘ Exploit is not 100% reliable

﹘ We increased probability of success by spraying
many MCFData objects

The exploit structures the overwrite to corrupt a type table
pointer in an MCFData object to point to the controlled object
from Primitive 3 (ARFX)

﹘ At call end, the object will be freed calling a fake finalize
function pointer specified in the controlled object

Control flow hijack using
out of bounds write

Corruption Target

Fake Type Table in ARFX placed
object

Hijacked finalize fptr

03 Exploitation: Primitive 4

Hijacked finalize fptr
called on object
destruction at end of call

The exploit can perform the out of bounds write but now the
question is “What do we corrupt?”

• Answer: The sprayed MCFData objects from Primitive 2

The sprayed MCFData objects are sized such that they are
allocated in the same Scudo region (0x160) as the indexed
vector

• Note: Scudo is non deterministic
﹘ Exploit is not 100% reliable

﹘ We increased probability of success by spraying
many MCFData objects

The exploit structures the overwrite to corrupt a type table
pointer in an MCFData object to point to the controlled object
from Primitive 3 (ARFX)

﹘ At call end, the object will be freed calling a fake finalize
function pointer specified in the controlled object

std::vector<MediaDescriptionUpdate>

Scudo Class Region 0x160

Index Base

Sprayed MCF Data Objects from Primitive 2

MCFData Object Overwrite03 Exploitation: Primitive 4

std::vector<MediaDescriptionUpdate>

Scudo Class Region 0x160

Index Base

Sprayed MCF Data Objects from Primitive 2

MCFData Object Overwrite03 Exploitation: Primitive 4

Negative Index (selected
from offline sampling of
exploit success) * 0x50

std::vector<MediaDescriptionUpdate>

Scudo Class Region 0x160

Index Base

Sprayed MCF Data Objects from Primitive 2

Negative Index (selected
from offline sampling of
exploit success) * 0x50

MCFData Object Overwrite03 Exploitation: Primitive 4

std::vector<MediaDescriptionUpdate>

Scudo Class Region 0x160

Index Base

Sprayed MCF Data Objects from Primitive 2

Negative Index (selected
from offline sampling of
exploit success) * 0x50

MCFData Object Overwrite03 Exploitation: Primitive 4

Overwrite must be offset
to overwrite MCFData
typeID but not fields that
will break execution

std::vector<MediaDescriptionUpdate>

Scudo Class Region 0x160

Index Base

Sprayed MCF Data Objects from Primitive 2

Negative Index (selected
from offline sampling of
exploit success) * 0x50

MCFData Object Overwrite03 Exploitation: Primitive 4

Overwrite must be offset
to overwrite MCFData
typeID but not fields that
will break execution

Point type table to fake
MCFRuntimeClass
allocated by ARFX

JOP Chain to Stage 1 Payload

03 Exploitation: Primitive 4

JOP Chain to Stage 1 Payload

03 Exploitation: Primitive 4

MCFRelease
decrements ref count
to 0 and calls
corrupted finalize()
function pointer

JOP Chain to Stage 1 Payload

03 Exploitation: Primitive 4

x19 points to the start of the
overwritten MCFData

object

ldr x8, [x19]

Places start of fake object into x8

JOP Chain to Stage 1 Payload

03 Exploitation: Primitive 4

ldp x0, x9, [x8, #0x110]

Places dlopen path into x0

Places dlopen gadget into x9

x0 dlopen
path

x9 dlopen
gadget

JOP Chain to Stage 1 Payload

03 Exploitation: Primitive 4

JOP Chain to Stage 1 Payload

03 Exploitation: Primitive 4

dlopen loads the library path from
Primitive 1 achieving RCE

Stage 1 Payload: RevShell

03 Exploitation: Primitive 4

DEMO

04 Mitigations

04 Mitigations

Title Mitigation Details

Prevent Direct dlopen of E2EE Files
Hook dlopen in app to prevent dynamic
loads of E2EE file attachment paths.

Libcpp Hardening to Mitigate OOB
STL Accesses

Deploy libc++ hardening to mitigate issues
like Vulnerabilities 2 and 4 from being
exploitable

Improve App Message Handling in
Server Side Infrastructure

Remove the 0-click heap spraying primitive
by hardening server side validation logic

Msys Memory Isolation for MCF
Types

Isolate Msys allocations from the system
heap to make them harder to target for
corruption

Closing gap in CFI icall protection
Restricts jump oriented programming
attacks by protecting MCF function pointer
calls

Exploitation
provides
defensive
insight
Building the exploit allowed us to
identify 15+ security engineering
outcomes to harden both Messenger for
Android as well as the larger Meta
Family of Apps. These engineering tasks
would not have been obvious unless we
had actually gone through the effort of
building the exploit.

04 Mitigations

Title Mitigation Details

Prevent Direct dlopen of E2EE Files
Hook dlopen in app to prevent dynamic
loads of E2EE file attachment paths.

Libcpp Hardening to Mitigate OOB
STL Accesses

Deploy libc++ hardening to mitigate issues
like Vulnerabilities 2 and 4 from being
exploitable

Improve App Message Handling in
Server Side Infrastructure

Remove the 0-click heap spraying primitive
by hardening server side validation logic

Msys Memory Isolation for MCF
Types

Isolate Msys allocations from the system
heap to make them harder to target for
corruption

Closing gap in CFI icall protection
Restricts jump oriented programming
attacks by protecting MCF function pointer
calls

Exploitation
provides
defensive
insight
Building the exploit allowed us to
identify 15+ security engineering
outcomes to harden both Messenger for
Android as well as the larger Meta
Family of Apps. These engineering tasks
would not have been obvious unless we
had actually gone through the effort of
building the exploit.

04 Mitigations

Title Mitigation Details

Prevent Direct dlopen of E2EE Files
Hook dlopen in app to prevent dynamic
loads of E2EE file attachment paths.

Libcpp Hardening to Mitigate OOB
STL Accesses

Deploy libc++ hardening to mitigate issues
like Vulnerabilities 2 and 4 from being
exploitable

Improve App Message Handling in
Server Side Infrastructure

Remove the 0-click heap spraying primitive
by hardening server side validation logic

Msys Memory Isolation for MCF
Types

Isolate Msys allocations from the system
heap to make them harder to target for
corruption

Closing gap in CFI icall protection
Restricts jump oriented programming
attacks by protecting MCF function pointer
calls

Exploitation
provides
defensive
insight
Building the exploit allowed us to
identify 15+ security engineering
outcomes to harden both Messenger for
Android as well as the larger Meta
Family of Apps. These engineering tasks
would not have been obvious unless we
had actually gone through the effort of
building the exploit.

04 Mitigations

Title Mitigation Details

Prevent Direct dlopen of E2EE Files
Hook dlopen in app to prevent dynamic
loads of E2EE file attachment paths.

Libcpp Hardening to Mitigate OOB
STL Accesses

Deploy libc++ hardening to mitigate issues
like Vulnerabilities 2 and 4 from being
exploitable

Improve App Message Handling in
Server Side Infrastructure

Remove the 0-click heap spraying primitive
by hardening server side validation logic

Msys Memory Isolation for MCF
Types

Isolate Msys allocations from the system
heap to make them harder to target for
corruption

Closing gap in CFI icall protection
Restricts jump oriented programming
attacks by protecting MCF function pointer
calls

Exploitation
provides
defensive
insight
Building the exploit allowed us to
identify 15+ security engineering
outcomes to harden both Messenger for
Android as well as the larger Meta
Family of Apps. These engineering tasks
would not have been obvious unless we
had actually gone through the effort of
building the exploit.

04 Mitigations

Title Mitigation Details

Prevent Direct dlopen of E2EE Files
Hook dlopen in app to prevent dynamic
loads of E2EE file attachment paths.

Libcpp Hardening to Mitigate OOB
STL Accesses

Deploy libc++ hardening to mitigate issues
like Vulnerabilities 2 and 4 from being
exploitable

Improve App Message Handling in
Server Side Infrastructure

Remove the 0-click heap spraying primitive
by hardening server side validation logic

Msys Memory Isolation for MCF
Types

Isolate Msys allocations from the system
heap to make them harder to target for
corruption

Closing gap in CFI icall protection
Restricts jump oriented programming
attacks by protecting MCF function pointer
calls

Exploitation
provides
defensive
insight
Building the exploit allowed us to
identify 15+ security engineering
outcomes to harden both Messenger for
Android as well as the larger Meta
Family of Apps. These engineering tasks
would not have been obvious unless we
had actually gone through the effort of
building the exploit.

04 Mitigations

Title Mitigation Details

Prevent Direct dlopen of E2EE Files
Hook dlopen in app to prevent dynamic
loads of E2EE file attachment paths.

Libcpp Hardening to Mitigate OOB
STL Accesses

Deploy libc++ hardening to mitigate issues
like Vulnerabilities 2 and 4 from being
exploitable

Improve App Message Handling in
Server Side Infrastructure

Remove the 0-click heap spraying primitive
by hardening server side validation logic

Msys Memory Isolation for MCF
Types

Isolate Msys allocations from the system
heap to make them harder to target for
corruption

Closing gap in CFI icall protection
Restricts jump oriented programming
attacks by protecting MCF function pointer
calls

Exploitation
provides
defensive
insight
Building the exploit allowed us to
identify 15+ security engineering
outcomes to harden both Messenger for
Android as well as the larger Meta
Family of Apps. These engineering tasks
would not have been obvious unless we
had actually gone through the effort of
building the exploit.

Exploitation can be used as a defensive
exercise to harden products

All vulnerabilities presented in this talk
have been fixed

Participate in Meta’s bug bounty program
to earn monetary rewards up to $300k
● WhatsApp in scope for Pwn2Own Ireland

October 22–25, 2024

Takeaways

Thanks! Questions?
Resources:
1. https://engineering.fb.com/2023/09/12/security/meta-quest-2-defense-through-offense/
2. https://www.facebook.com/whitehat - Meta Bug Bounty

Andrew Calvano
Meta Product Security

Octavian Guzu
Meta Product Security

Special Mention: Sampriti Panda, for his help in the
exercise

Ryan Hall
Meta Red Team X

https://engineering.fb.com/2023/09/12/security/meta-quest-2-defense-through-offense/
https://www.facebook.com/whitehat

